ЗАЩИТА ТРУБОПРОВОДОВ ОТ КОРРОЗИИ В ТЕПЛОВЫХ КАМЕРАХ

Почти 70% всех дефектов тепловых сетей, вызванных коррозионными процессами, приходится на тепловые камеры, которые легко можно приобрести пройдя по ссылке – http://psk-gbi.ru/catalog/telefonnaja-kanalizacija/teplovie-kameri

О чем знает и не знает статистика

Перефразируя на современный лад строки романа «Двенадцать стульев», написанного в годы начала строительства систем централизованного теплоснабжения, можно сказать: «Статистика знает все. От статистики не скроешься никуда. Она имеет точные сведения о том, что почти 70% всех дефектов тепловых сетей, вызванных коррозионными процессами, приходится на тепловые камеры (1). Не знает статистика только одного – сколько в стране тепловых камер». Действительно, определить точное количество тепловых камер затруднительно, однако, учитывая, что расстояние между ними на трубопроводе не превышает 150-200 метров, а общая протяженность тепловых сетей по стране составляет более 200 тысяч километров (2), можно получить приближенную цифру – один миллион камер. Приняв среднюю длину камеры за четыре метра, несложно посчитать, что в тепловых камерах расположено около 4000 километров трубопроводов.

Акцентируя внимание на существующей проблеме защиты трубопроводов от коррозии, именно в тепловых камерах, отметим то, что по данным Мосэнерго повреждаемость трубопроводов в тепловых камерах в десять раз выше, чем на линейной части трубопроводов.

Тепловая камера как она есть

Для того чтобы установить причины интенсивной коррозии трубопроводов в тепловых камерах и определить эффективные способы их защиты, необходимо конкретизировать, что понимается под «тепловой камерой». (В нормативной и справочной литературе по теплоснабжению этот термин встречается неоднократно, однако, как ни странно, четкой его формулировки не приводится). Попытаемся материализовать термин «тепловая камера» в виде неотъемлемого элемента системы теплоснабжения, дав ему максимально емкое определение.

«Тепловая камера – заглубленное сооружение, предназначенное для размещения и обслуживания узлов теплопроводов, представляющих места с ответвлениями, секционными задвижками, дренажными устройствами, компенсаторами, неподвижными опорами и опусками труб. Выполняется наиболее часто из монолитного бетона или железобетона и железобетонных конструкций».

Из определения следует, что надежность эксплуатации тепловых сетей в целом, во многом определяется возможностью безаварийного функционирования участков трубопроводов, находящихся в тепловых камерах. Из того же определения следует, что в тепловой камере более вероятно возникновение таких условий эксплуатации трубопровода, которые приводят к возрастанию скорости коррозионных процессов металла труб, опор, компенсаторов и арматуры.

Так, из-за значительных габаритов узлов теплопроводов, размещаемых в тепловых камерах, камеры имеют большие размеры. Ввиду наличия градиента между температурами поверхностей узлов трубопровода и температурами стенок и перекрытий камеры, возникает интенсивная конвекция воздуха, который в тепловых камерах всегда имеет повышенную влажность. Повышенная влажность воздуха объясняется наличием многих, характерных для тепловых камер, неблагоприятных эксплуатационных факторов, к основным из которых следует отнести: протечки поверхностных вод через негерметично закрывающиеся крышки люков, утечки теплоносителя через сальниковые уплотнения задвижек и компенсаторов, разрушенные перекрытия каналов (фото 1). При конвекции воздуха на перекрытиях тепловых камер, прилегающих частях канала, а также на плоскостях щитовых опор, имеющих температуру ниже точки росы, происходит конденсация влаги (3) с последующим образованием капели (фото 2), в результате чего происходит сосредоточенное в отдельных местах увлажнение теплоизоляционных конструкций (фото 3), вызывающее коррозию металла труб.

Также необходимо отметить, что повышенная влажность воздуха представляет опасность не только для трубопроводов, но и

для других конструкций тепловых камер. Из данного ранее определения очевидно, что обслуживание узлов теплопроводов требует периодического присутствия в тепловых камерах рабочего персонала, для чего в тепловых камерах устанавливаются лестницы и трапы. Постоянная конденсация влаги на стальных лестницах, предназначенных для спуска в камеры, приводит к протеканию процесса «мокрой» коррозии металла лестниц (фото 4) и разрушению в первую очередь их крепежных конструкций (арматуры, заделанной в бетон) на границе раздела «бетон-воздух». Постоянное увлажнение теплоизоляционных конструкций приводит в конечном итоге к их разрушению, возрастанию температуры воздуха в тепловых камерах и дальнейшему увеличению количества конденсата (капели с перекрытий). Полуразрушенные лестницы и неблагоприятный температурный режим затрудняют доступ в тепловые камеры, возникает опасность получения рабочим персоналом производственных травм. Так появляются «брошенные» камеры, в которых узлы трубопроводов практически не обслуживаются, контроль за коррозионными процессами не осуществляется, и камера через некоторое время из разряда «брошенных» переходит в разряд «аварийных».

Изоляционные конструкции в теории и реальности

Однако высокую повреждаемость трубопроводов и их узлов в тепловых камерах нельзя объяснять только сложными условиями эксплуатации. Основная причина их неудовлетворительного состояния заключается в отсутствии необходимых надежных изоляционных конструкций, что подтверждается результатами обследования, проведенного в 350 камерах тепловых сетей г. Москвы. При обследовании ни в одной из тепловых камер не обнаружено классической (в теории) изоляционной конструкции трубопровода, состоящей из четырех функциональных слоев: антикоррозионного покрытия, теплоизоляционного слоя с армирующими и крепежными деталями, гидроизоляционного слоя и покровного защитно-механического слоя.

Наиболее часто (в 80% обследованных камер) изоляционная конструкция состояла из слоя минеральной ваты и асбоцементной штукатурки по металлической сетке. Как показывает практика, слой асбоцементной штукатурки, предназначенный только для защиты теплоизоляционных конструкций от механических повреждений, при капели с перекрытий и протечках не препятствует проникновению влаги к армирующей металлической сетке, теплоизоляционным конструкциям и их крепежным деталям. Одновременно протекающая под воздействием капели во влажной атмосфере коррозия крепежных деталей теплоизоляции и каркаса штукатурки – металлической сетки, приводит к обрушению штукатурки совместно с тепловой изоляцией (фото 5).

Имеющиеся в 20% обследованных камер изоляционные конструкции состояли из трех функциональных слоев: тепловой изоляции, антикоррозионного или гидроизоляционного покрытия и асбоцементной штукатурки. Антикоррозионные или гидроизоляционные покрытия, предназначенные для защиты наружной поверхности труб и теплоизоляционных конструкций от коррозии и увлажнения, выполненные в подавляющем большинстве камер с применением традиционных материалов (битумные лаки, мастики и рулонные материалы), через 2-3 года эксплуатации характеризовались: антикоррозионные – малой толщиной, высокой дефектностью и низкой прочностью сцепления с металлом труб (фото 6); гидроизоляционные – отсутствием эластичности (произошло охрупчивание покрытий с образованием трещин) или низкой термостойкостью (фото 7). По результатам обследования можно заключить, что покрытия на битумной основе быстро утрачивают свои защитные функции и не обеспечивают необходимой степени защиты металлических и теплоизоляционных конструкций теплопровода, находящихся в тепловых камерах.

Рекомендуемые на данный момент для защиты теплопроводов эмали и шпатлевки (эпоксидные, органосиликатные и кремнийорганические) в тепловых камерах применяются достаточно редко. Это объясняется тем, что данные материалы обеспечивают долговременную защиту лишь при соответствующей (дробеструйной и пескоструйной) подготовке защищаемых поверхностей, что возможно лишь на специально оборудованных участках. При производстве антикоррозионных покрытий в тепловых камерах выполнение пескоструйных и дробеструйных работ по ряду причин невозможно, из-за чего достижение долговременного защитного эффекта от применения вышеуказанных материалов представляется маловероятным.

Низкая эффективность защиты трубопроводов упомянутыми выше антикоррозионными и гидроизоляционными материалами подтверждается и тем, что несмотря на периодическое восстановление в тепловых камерах изоляционных конструкций при текущих ремонтах (с выполнением антикоррозионной защиты или гидроизоляции), добиться значительного продления срока эксплуатации трубопроводов в отремонтированных «аварийных» тепловых камерах без капитального ремонта (с заменой труб, узлов трубопровода и перекрытий) не удается.

В связи с этим, одним из основных направлений по обеспечению эффективной защиты теплопроводов в камерах (и снижению их удельной повреждаемости в целом), является разработка антикоррозионных и гидроизоляционных материалов, технологические характеристики которых обеспечивают возможность производства долговечных покрытий в трассовых условиях.

Вариации на заданную тему

Отметим, что материалы, применяемые для антикоррозионной защиты металлических конструкций, должны иметь высокую прочность сцепления с прокорродировавшими или ранее окрашенными поверхностями, пескоструйная обработка которых перед нанесением покрытия невозможна или нецелесообразна по экономическим соображениям. Получаемое при этом покрытие должно продолжительное время сохранять свои защитные свойства и обеспечивать безаварийную эксплуатацию теплопровода. При разработке гидроизоляционных составов следует учитывать то, что получаемые покрытия должны обладать повышенной механической прочностью, быть термостойкими и эластичными. Для повышения эффективности применения разрабатываемых антикоррозионных и гидроизоляционных составов следует предусмотреть возможность их нанесения на действующие трубопроводы в тепловых камерах при различных неблагоприятных факторах (повышенные влажность, температура, стесненные условия).

В журнале «Новости теплоснабжения» № 4/2000 г. была опубликована статья «Защита трубопроводов полимерными покрытиями», содержащая общую информацию о разработанном комплекте антикоррозионных материалов на полиуретановой основе, опытно-промышленное внедрение которого было проведено на действующих участках трубопроводов, находящихся в тепловых камерах. Положительные результаты применения данных материалов позволяют более подробно ознакомить читателей с технологией производства работ, направленных на восстановление первоначальных эксплуатационных качеств теплопроводов. В зависимости от характера дефектов изоляционной конструкции имеется возможность осуществления нескольких вариантов защиты, приведенных ниже.

Вариант 1. В тепловых камерах с полностью разрушенной изоляционной конструкцией целесообразно выполнять полный комплекс работ, включающий: нанесение антикоррозионного покрытия на поверхность трубопровода, теплоизоляцию трубопровода с последующим формированием на поверхности тепловой изоляции водонепроницаемого покрытия (гидроизоляция).

Антикоррозионная защита и гидроизоляция трубопроводов и их узлов выполняется в следующей последовательности. На первом этапе щетками и скребками удаляется слой продуктов коррозии, имеющий низкую прочность сцепления с поверхностью металла. На прокорродированную поверхность металла, очищенную от пластовой ржавчины, наносится многофункциональный грунтовочный состав, позволяющий одновременно пассивировать поверхность и сформировать прочно сцепленный с ней адгезионный подслой для последующего нанесения защитного покрытия (фото 8). Далее на загрунтованную поверхность наносится защитное покрытие, совместимое по физико-механическим характеристикам с грунтом, что исключает возможность его отслаивания при температурных колебаниях трубопровода (термоциклирование) и обеспечивает длительную работоспособность защитной системы «грунт-покрытие» (фото 9).

Вторым этапом работ является создание на трубопроводе теплогидроизоляционной конструкции, технологичность и экономичность формирования которой достигается за счет применения в качестве тепловой изоляции широко распространенных минераловатных матов, обтягиваемых стеклотканью с последующей пропиткой стеклоткани гидроизоляционной мастикой, являющейся модификацией состава, применяемого для производства защитного покрытия. Формируемый при этом армированный слой одновременно выполняет функции защитного кожуха и водонепроницаемого для капели покрытия (фото 10).

Вариант 2. В тепловых камерах с частично разрушенной теплоизоляционной конструкцией (фото 3) рекомендуется удалить участки поврежденной изоляции по радиусу и оценить состояние металла под ними. При наличии коррозионных повреждений металла следует выполнять локальный ремонт в соответствии с вариантом 1. В случае отсутствия коррозионных повреждений выполняются только работы второго этапа варианта 1.

Вариант 3. В «предаварийных» тепловых камерах, с только что начавшимся процессом разрушения изоляционной конструкции (появление трещин в штукатурке либо ее интенсивное увлажнение в местах протечек с вымыванием асбоцементной смеси и коррозией металлической сетки), рекомендуется также осуществлять пропитку штукатурки вышеупомянутой гидроизоляционной мастикой с целью гидрофобизации ее поверхности и заполнения (залечивания) образовавшихся трещин. Лестницы, трапы и прочие вспомогательные конструкции, находящиеся в тепловой камере, защищают по аналогии с трубопроводом, т. е. путем нанесения грунтовочного и покровного составов.

Грунтовочный, покровный и гидроизоляционный составы готовятся на месте применения, в стесненных условиях тепловых камер могут наноситься вручную кистью, причем отверждение материалов происходит независимо от температурно-влажностного режима тепловых камер.

Внедрение: итоги и выводы

Для подведения итогов работы по внедрению новой технологии защиты трубопроводов в тепловых камерах, авторами были собраны отзывы от организаций, осуществляющих эксплуатацию, ремонт и монтаж тепловых сетей. Информация, содержащаяся в отзывах, позволяет сделать некоторые выводы, которые могут быть учтены при проектировании, строительстве и ремонте тепловых камер:

1. Разработка комплекта антикоррозионных и гидроизоляционных материалов для защиты теплопроводов осуществлялась на основе экспертных оценок, выполненных с учетом динамики патентования материалов для защиты от коррозии и статистической обработки результатов комплексного обследования условий эксплуатации и состояния изоляционных конструкций в тепловых камерах.

2. Первоначальное выполнение антикоррозионных и гидроизоляционных работ в тепловых камерах осуществлялось сотрудниками организации-разработчика с обязательным периодическим освидетельствованием состояния изоляционных конструкций совместно с представителями организаций-владельцев тепловых камер.

3. На основании положительных отзывов, полученных от организаций-владельцев (в процессе четырехлетнего испытательного цикла покрытий в условиях тепловых камер действующих тепловых сетей) и результатов параллельно проводимых стендовых испытаний, были определены оптимальные варианты защиты и разработаны подробные технологические инструкции, регламентирующие порядок выполнения работ по антикоррозионной и гидроизоляционной защите в тепловых камерах.

4. Разработанные инструкции и рекомендации позволили осуществить передачу технологий защиты трубопроводов в тепловых камерах персоналу эксплуатирующих, ремонтных и монтажных организаций. Проведенное обследование показало, что в настоящий момент все изоляционные конструкции, самостоятельно выполненные персоналом организаций с применением разработанных материалов, обеспечивают надежную защиту трубопроводов и их конструктивных элементов.

5. Для освоения технологий применения разработанного комплекта материалов в тепловых камерах не требуется организация производственных участков, оснащенных специальным оборудованием, что означает возможность снижения удельной повреждаемости теплопроводов без капитальных вложений.

Таким образом, антикоррозионная защита и гидроизоляция трубопроводов в тепловых камерах с применением разработанного комплекта материалов на полиуретановой основе позволяют: обеспечить высокую надежность функционирования трубопроводов, увеличить их межремонтный срок службы и, при минимальных затратах, снизить удельную повреждаемость теплопроводов в целом.

Литература

1. Л.В.Родичев. Статистический анализ процесса коррозионного старения теплопроводов. – Строительство трубопроводов. – 1994, № 9.

2. Техническое обоснование состояния и перспективы совершенствования систем теплопроводов на основе современных антикоррозионных и теплоизоляционных покрытий. Отчет АО ВНИИСТ, Москва, 1995 г.

3. И.В. Стрижевский, М.А.Сурис. Защита подземных теплопроводов от коррозии. Энергоатомиздат, Москва, 1983 г.

Оцените статью
Тайны и Загадки истории