Освоение человеком космоса идет беспрестанно, но даже в самом близком космосе свои, непривычные и до сих пор до конца не объясненные наукой, законы В октябре в прокате прошел фильм Альфонсо Куарона «Гравитация». Из-за аварии герои Сандры Буллок и Джорджа Клуни оказываются в открытом космосе и пытаются добраться до какого-нибудь корабля, чтобы спастись. В Голливуде, как обычно, старались изо всех сил, но допустили массу физических ошибок. Например, в невесомости Куарона: – волосы героини остаются плотно прижатыми к голове. Стрижка под мальчика, очевидно, призвана нивелировать эффект, но, к огорчению киношников, даже короткие волосы подчиняются законам физики; – оба астронавта движутся в вакууме с одинаковой скоростью, однако плотно натянутый между ними трос вдруг начинает произвольно извиваться; – герой Джорджа Клуни, летающий вокруг шаттла при помощи реактивного ранца, газует даже тогда, когда висит на одном месте, хотя в невесомости он может оставаться там годами; – огонь на МКС горит подозрительно по-земному — на орбите невозможны показанные в кино языки пламени ОГНЕННЫЙ ШАР На Земле пламя имеет вытянутую форму благодаря силе тяжести. Молекулы газов, которые входят в состав воздуха, притягиваются к планете точно так же, как и остальные объекты, обладающие массой. Поэтому чем ближе к поверхности, тем больше молекул скапливается на одном и том же пространстве. Огонь нагревает окружающий воздух, то есть заставляет молекулы двигаться быстрее. Ускорившиеся газы разбегаются во все стороны от пламени и сталкиваются с более медленными, то есть холодными, молекулами. В нижней части огонька их больше, и спринтеры, врезаясь в неспешных товарищей, как в стену, выскакивают наверх, где плотность газа меньше. На освободившееся место приходят медленные молекулы, в том числе кислород, благодаря которому огонь продолжает гореть. Такое перемещение газов называют конвекцией, и в невесомости она невозможна, потому что плотность газов одинакова во всем объеме (например, МКС). По- этому огонь на космической станции (к счастью) горит очень плохо. Пламя не вытянуто, а выглядит как шар. Более того, огонь быстро тухнет, потому что молекулы кислорода не успевают вовремя добираться до него, а продукты горения, напротив, уходят слишком медленно. В открытом космосе свеча или спичка не будут гореть вовсе, так как в межзвездном пространстве почти нет кислорода (слово «почти» означает, что отдельные молекулы там все же встречаются, но от одной до другой могут быть многие миллионы километров). КИПЯЩИЙ ПУЗЫРЬ Ученые примерно понимали, что будет происходить на орбите с пламенем еще до того, как космонавты провели реальные эксперименты в невесомости. А вот насчет поведения жидкостей Небоскреб до МКС Многие ошибочно полагают, что невесомость — это отсутствие силы тяжести. На самом деле сила тяжести в космосе вовсе не исчезает, по крайней мере на околоземной орбите. Именно эта сила удерживает Луну на ее орбите вокруг Земли и не дает спутникам и космическим кораблям умчаться в другую галактику. Если бы кто-то построил небоскреб высотой 370 км (примерно здесь пролегает орбита МКС), забрался на верхний этаж и шагнул из окна, то, вместо того чтобы стать новым искусственным спутником планеты, экспериментатор очень быстро упал бы на Землю Чтобы нарезать круги вокруг планеты, не тратя топливо, и наслаждаться невесомостью, сперва нужно как следует разогнаться — примерно до 7,9 км/с. Эта скорость называется первой космической. И если, стоя на последнем этаже гипотетического небоскреба, вы бросите камень так быстро, то он попрежнему будет падать на Землю, но траектория этого падения как раз совпадет с земной орбитой. у них такой уверенности не было — это вообще один из самых сложных разделов физики с уравнениями, которые зачастую не влезают на журнальную страницу. Выяснить, что произойдет на орбите с содержимым закипающего чайника, решили исследователи из Мичиганского университета. Они придумали множество экспериментов, которые экипажи пяти миссий космических шаттлов выполняли с 1992 по 1996 год. Вместо воды астронавты использовали хладагент на основе фреона, который кипит при низких температурах, — наука наукой, а лечить ожоги на орбите куда сложнее, чем на Земле. Оказалось, что в невесомости кипящая жидкость превращается в один гигантский пузырь, который растет, вбирая в себя случайно образующиеся пузырьки поменьше. Физики до конца не уверены, почему орбитальный кипяток выглядит именно так, но полагают, что причина все в том же отсутствии конвекции и «отключении» силы Архимеда. В описывающей ее формуле присутствует вес, а в невесомости он равен нулю. ВРЕДНОЕ ШАМПАНСКОЕ Без силы Архимеда нельзя не только принять ванну (по легенде, ученый открыл названный его именем принцип как раз во время водных процедур), но и насладиться кока-колой или пивом. Газированные напитки имеют характерный привкус благодаря углекислому газу, который выходит из жидкости в виде пузырьков. В невесомости CO² не выталкивается из напитков и остается растворенным в них, даже по- пав в желудки космонавтов. Отрыгнуть углекислый газ или как-то еще избавиться от него невозможно, поэтому пиво, а тем более шампанское на орбите доставляет одни неприятности. Впрочем, коммерсанты думают о космонавтах: австралийская пивоварня4-Pines совместно с исследовательской компанией Saber Astronautics разработала пиво с пониженным содержанием CO². Компенсировать недостаток «волшебных пузырьков» должен более насыщенный вкус. Американский астронавт Клейтон Андерсон наблюдает, как пузырек воздуха плавает внутри водяного пузыря на борту шаттла «Дискавери» БЕСКОНЕЧНЫЙ КРИСТАЛЛ Без конвекции в невесомости не горит огонь, а космонавтам приходится при помощи вентиляторов гонять воздух по станции, иначе даже выступивший на лбу пот не испаряется. Но есть один процесс, которому отсутствие конвекции идет на пользу, — это рост кристаллов. Красивые многогранники образуются из раствора того или иного вещества, когда атомы или молекулы из жидкости присоединяются к имеющемуся зачатку кристалла. Лишившаяся части вещества жидкость становится менее плотной, и на Земле она выталкивается наверх, то есть происходит конвекция. Постоянное движение жидкости не дает кристаллу как следует разрастись. В невесомости конвекции нет, поэтому кубы и тетраэдры (например, минерала цеолита) вырастают до очень внушительных размеров. Нерожденный космонавт Если жить в невесомости худо-бедно можно, то родиться на орбите человек и другие сложные млекопитающие, похоже, не смогут. Сами роды особых проблем (вероятно) не вызовут, но шансов, что эмбрион перенесет девять месяцев без гравитации, нет. Развитие плода — очень сложный и скоординированный процесс, который регулируется множеством внешних и внутренних факторов, один из которых — земное притяжение. Без него ткани и органы эмбриона формируются неправильно, и он погибает на ранних стадиях. В 1996 году шаттл «Колумбия» доставил на орбиту мышиные эмбрионы, которые только начали развиваться. Они пробыли в невесомости четыре дня и вернулись на Землю. Все «путешественники» погибли, причем в них не произошло ни одного изменения, характерного для нормальных эмбрионов. В параллельном опыте в лаборатории все процессы шли как надо. Еще раньше, в 1979 году, в рамках советского проекта «Бион-5» несколько крыс спарились на орбите, однако ни одна из самок не смогла выносить крысят. Впрочем, некоторым организмам невесомость нипочем. Небольшие рыбки японские оризии (на фото) в 1994 году успешно отложили икру на борту шаттла «Индевор», и некоторые из икринок развились в полноценных взрослых особей. Впрочем, среда обитания рыб отчасти напоминает невесомость, и, вероятно, поэтому оризии смогли благополучно размножиться в космосе. Японские оризии не только прекрасно развиваются в невесомости от икринки до взрослой особи. Эти рыбки стали первыми позвоночными, которые успешно спарились в космосе ПРОПАДАЮЩИЙ КАЛЬЦИЙ Одушевленные создания построены из тех же молекул и атомов, что и неживая материя, поэтому аномальное (на взгляд землянина) изменение законов физики действует и на них. Плюс сложнейшие биохимические и физиологические системы живых существ тоже реагируют на невесомость. Например, во время первых длительных космических полетов выяснилось, что в невесомости из костей очень интенсивно вымывается кальций. За месяц на орбите космонавты теряют как минимум 1,5% костной массы. Причины этого неотвратимого процесса до конца неясны. Ученые предполагают, что дело, хотя бы отчасти, может быть в том, что механизмы, отвечающие за поддержание костей в нормальном состоянии, ориентируются на внешние стимулы, в том числе постоянное земное притяжение. Когда оно исчезает, системы, которые миллионы лет складывались с учетом гравитации планеты, дают сбой. Не менее пагубно невесомость сказывается на мышцах. На Земле мускулатура работает даже тогда, когда мы смотрим телевизор или спим. В космосе мышцы практически выключаются и очень быстро «усыхают». Когда 10 декабря 1982 года Анатолий Березовой и Валентин Лебедев вернулись с орбиты после рекордно длительной на тот момент миссии — больше 211 суток, — их пришлось выносить из корабля «Союз Т-7». У космонавтов атрофировались мышцы, и только после интенсивного курса реабилитации они смогли нормально ходить. ЗАРАЗНЫЕ БАКТЕРИИ Некоторые существа в невесомости превращаются в монстров. В 2006 году экипаж шаттла «Атлантис» взял на орбиту бактерий Salmonella typhimurium, главных виновников отравлений у человека и животных. Опасные создания были запакованы в специальные контейнеры, от астронавтов требовалось всего лишь опустить поршень, чтобы сальмонеллы попали в емкость с питательным бульоном. Параллельно тот же эксперимент проводили специалисты на Земле. Перед возвращением космические микробы были зафиксированы специальным составом так, чтобы их внешний вид и ДНК остались такими же, какими они были в космосе. Изучив привезенных астронавтами сальмонелл, исследователи выяснили, что, по сравнению с земными бактериями, у них стали иначе работать 167 генов и изменилась интенсивность синтеза 73 белков. Эти адаптации были ответом на стресс от невесомости и значительно повысили заразность S. typhimurium. Попав в космос, микроорганизмы активизировали гены, которые отвечают за формирование биопленок — объединений бактерий, внутрь которых не могут пробиться ни иммунные клетки, ни антибиотики. Поэтому в длительных миссиях, например на Марс, людям стоит опасаться не только радиации или инопланетян, но и «родных» бактерий. Чтобы выяснить, как меняется запах роз в невесомости, астронавты Тиаки Мукаи и Джон Гленн добыли из цветков пахучие вещества при помощи специальной иглы ЦВЕТУЩАЯ РОЗА Растения особенно недоумевают без гравитации, ведь их корни, стебли и ветви «узнают» , куда расти, ориентируясь на притяжение Земли, — это явление называют геотропизмом. Но у флоры есть один трюк, благодаря которому космонавты уже давно разбили на орбите грядки: растения могут определять направления вверх-вниз еще и по источнику света. Они принимают лампочку за солнце и тянутся к ней, компенсируя отсутствие силы тяжести. И тем не менее невесомость сказывается на растительной физиологии. В 1998 году астронавт шаттла «Дискавери» Джон Гленн посадил на орбите розу сорта Overnight Sensation («ночное чувство»), чтобы изучить, как она будет пахнуть за пределами Земли. Оказалось, что в невесомости цветок источает совершенно иной аромат. И хотя в космосе роза пахла слабее, основных компонентов, ответственных за характерный аромат — фенилэтилового спирта, цитронеллола, гераниола и метилгераниата, — выделялось больше. Позже японская компания Shiseido воссоздала парфюмерную композицию растущей на орбите розы в аромате Zen.
Вам также может понравиться
Летняя Олимпиада 1980 года, проходившая в Москве и
043
Ее судьбу можно назвать уникальной: родившись среди
028
С подачи Екатерины II у ее любимого внука 15-летнего
031
«Квартирники», или домашние концерты, проходившие на
013
История Первой мировой сохранила много имен генералов
019
Отречение от престола не помогло Николаю II сохранить
029
Отречение от престола не помогло Николаю II сохранить
00
Отречение от престола не помогло Николаю II сохранить
00